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ABSTRACT 

The case of a strsanitube of cold gas going through a strong normal 

shock wave is treated.  Chemical reaction is allowed to occur downstream 

of the shock, where the pressure and the distribution of certain turbulent 

correlation functions are prescribed as a function of distance.  It Is 

shown that the turbulence modifies the flow field mainly through the ef- 

fects it has on the reaction rates leading to a hotter gas than if just 

the mean values of the tharmodynaadc functions for the turbulent flow 

were considered. The Glbbs* tunctlon for the fluid is also modified by 

the turbulent fluctuations, thus leading to different final equilibriuju 

conditions. 

This work was sponsored by the Advanced Research Projects Agency, 
Washington. D. C., under ARPA order 203-61, monitored by the Army Ordnanct 
Missile Command, Huntaville, Alabama, under Contract DA-04-495-ORD-3245. 
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I.  ISTRODÜGTlCal 

The pre&ent work was motivated by an atteapt to find theeretical 

explanations of the observable phettösiena regarding trails left in rhe 

atmosphere by object flyini through it at hypersonic speeds. 

In the case of equilibrlu© flow^ it has been shown by the author (1) 

and others (2) that for laminar flow, the trails left by blunt 

objects could be miles long depending on the detector used by the 

observer.  It was also recognized (i), and recently quantitatively sub- 

stantiated by Lees and Hromas (3), that when the trails beeesse turbulent, 

the cooling occurs much sore rapidly than in the laminar diffusion case. 

It is also known that when certain metallic pellets are fired at high 

speed or when small meteors disintegrate in the atsosphtre, they leave 

luminous trails which soisetimes are longer than estimated frc« the laaiinar 

or turbulent thermodynaslc equilibrium models (for pure air, for example) 

studied in the already mentioned references. This effect has beta easily 

"explained away" in the past by saying that the ablation products 

contaminate the high temperature air, thus leading to large increases in 

radiation. 

Although the foregoing explanation may be the correct one in «any 

physical situations of interest, the question was investigated by the 

author, sösnetinie ago, regarding the possibility of the existence of 

a new effect caused by the possible non-linear interaction of the turbulent' 

oscillations (in a compressible reacting fluid) with the reaction rates 

themselves. Could this interaction affect the rate of cooling of the 

turbulent wake of a blunt-nosed bodyt The answer turned out to be In the 

affirmative, but the effect was a function of the magnitude of the oscillating 

quantities relative to their mean values.  Some of these quantities have 

been measured in relatively lew speed flows, and for those cases^ chev are of 

Nuffibert In parentheses denote references at the end of this paper. 
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sm«ll inagnltude. However^ Slättery and Clay (4) have recently shown 

experiaentaliy that the oscillations in hypervelocity wakes can be 

large.  It was this last result that motivated the present Quantitative 

study. 

2.  EFFECT OF TURBULENCE ON THE CONSERVATION SQamOtiS OF A REACTING 

In order to bring to the forefront the coupling of the turbulence 

with the cheialcal kinetics, we will ne^lecc all norinal gradients when 

compared with the ones in the direction of motion.  Thus^ Reynolds and 

viscous stresses and laminar and turbulent conduction disappear from the 

continuity^ momentum and energy equation.  In general/ this is a very 

Important restriction^ but is not important for the purpose of this paper. 

The problem will thus be reduced to the invlscid adiabatic flow in a 

streamtube, with a prescribed pressure as a function of distance. However, 

the conservation equations, so drastically slsiplified, contain quantities 

which are in general functions of time. When mean values in time are 

taken^ certain correlation functions appear. The most important effect^ 

howeverj occurs in regard to the modification of the chemical kinetic 

races. 

2. 1  The Cgnservation Equations 

The conservation equations for a compressible reacting fluid 

with no normal gradients subject to a prescribed pressure gradient will 

be written.  The reason for creating essencially the case of a streamtube 

which is subject to a given pressure distribution, is thac it is the 

simplest case that could be considered in which the main features of a 

hypersonic wake of a blunc body  can be kept in the profalein: the strong 

pressure gradients which govern ehe chemical kinetics of the problem. 

This screamtube could be interpreted as the first approximation to the 

center streamtube of a turbulent reacting wake.  In order to keep the 

problem simple, the analysis will be restricted to a diatomic gas which 

can dissociate and recoabine.  Let an> scalar quantity time varying 
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quantity q be decoffiposed into q+q5, where q  represents the timm  averaged 

value and q' is the eise dependenc part.  Also, let bars ever a quantity 

denote a time average taken at a given point in space and will be 

used only when its deletion aay lead to aaibiguity. The equations for 

the mean quantities in one-dimenslonäl flow «rs given below (S) 

Momentum: 
au , —-—-  au    a 
dx       dx    ax p + po^ + uO'u1 + p'u'2 p'u,2l 

H 
where u^ pf  p and T denotei respectively, the tiae averaged values of 

velocity^ pressure, density and temperature^ u'2 is the Reynolds stress 

in the x-direction, 8 denotes axial distance^ non-diaensienalized for 

example with respect to body radius r : i.e. s « x/r ; R Is undissoeiated 
n- a 

(cold) gas coiiStant^ the primes denote time varying quantities^ and the 

bars denote time averages at a fixed position in space. The subscript 

oo denotes values of the quantities in the undisturbed gas ahead of the 

projectile. Our streaatube will consist, at the extreme left, of the 

free-stream gas which first goes through a normal shock wave (discontinuous) 

across which no chemical reaction takes place. Downstream of Che shock 

wave, chemical reaction is allowed to proceed with a prescribed _.ressure 

history which can be approximately prescribed a priori for a particular 

body shape because, for our purpose, it is not a sufficiently sensitive 

function of the reaction rates. 

Continuity; 
oo 
A -f 

^00 

h A MM1\ \  2 I 
L j 

where A denotes the cross section of Che streamtube, and the subscript 

GO denotes free stream conditions. 
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istagi  j^ 
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iu<h + -)J + dx puh f 
D'h' 
pn pu 

u' h_' 
uh 1 

—^1 
'u'h' 
uh 

1 d j  3) ./^u7  u^ . o'u'^ e'u*3  2 
2 dx |     \ nu    2   >      2 '. i 

f r H 
where h denotes enthalpy. 

From statistical mechanics, if it is  assumed Chat the vibra- 

tlonal energy is always in equilibrium with the translational energy 

(i.e. vibrational excitation rates are infinitely fast), and this Is 

not a significant restriction for the present purpose, Che enthalpy of 

a dissociated diatv.sic gas can be written as a function of temperature 

and atomic mass fraction y, as 

RT 
CO 

T 
OD 

1 
(5 + ? )y +  ( f + ß) (l-y) Uy  ( | -   g) XX u yi 

- Ci-y) ß2 [Ixp (ev/T)l ji +1 ~? - ß ex? (8 m  T'fc 

L 
v' 'I ^ 

>      i 4 .1 

where 9 is the vibrational constant or the molecule and QE » 5y 365° 

e /T 
v 

exp (0v/T) -1 

State: P/p nD 

H30   OO 

(1+y) 11 + M-j -,- - " ipy 
I 

y'T' 
vT f1 

pyT   ^ J 

Chemical Kinetics: nj u 

ÜD 

dv_ 
ds 

w 
.2 M 
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where 1. and I stand^ respectively, for ehe dissociation and reeosbina- 

tion terms in the kinetic equation, and W is the atcsotc weight sf the 

chemical species. The novel results chat will be presented^ will depend 

heavily on Iq. 6 which "ill be derived in detail in the next section. 

The unknowns are A, u, P, y and T as functions of s, as well as 

all the correlation functions, these will have to be specified as a 

function of s and will be discussed in Section 3, 

2.2 The Chemical Kinetic Equations 

There is no particular virtue in writing what follows in general 

form for any diatomic molecule. If done in general, some of the expressions 

will become too lengthy and cunjbersoiae. Any reader ir>.erested in using 

the present approach for his particular reaction will certainly want to 

redertve all the expressions on his own, Thus^ we will specialise all 

the following discussion to oxygen as a typical component of air. 

Con«idar the reaction 

0 + 0 + M 02+M H 
where the third body M, could either be 0 or 0o. The k's are the 

reaction rate constants, Ijet a superscript on them indicate the type 

of third body umirtr consideration, and also let j0 j denote the instantaneous 
3 concentration of oxypen atoms in moles/csi , the reaction rate can be 

expressed as 

QD 
dc 2k° (Vf - <* [of [o2l + 2u° [oJQ,] + a^a y    H 

The concentrations can be written in terms of mass  friction.* as 

C0J 

soles 

cm 

;(gm/cB3) 
f (ga/mole) 

a1« 
W 

R&-S, 3-62 



«h^re 1^16 ^/ffiöle and   P is   the density of  the gas mixture. 

Fros lef.   (6) 

^d2 
^   *   25kd   ' 

where ► QÖ] 
3-6  x  I0i8    T" exp(- ^JM )  ^ 

sole sec ' 

and T is  is    K,    We also know^   from  theoretical chemical kinetics, 

within the restriction  that a Boltasiann distribution exists at  the non- 

equilibfius tesperature^   that 

. 0, .0 
k^    V Äd 
k .0, ,0 cs 

r       K 2 k r r 
00 

where Kc(T) is the equilihriuis constant. For the temperatures that 

occur in oxygen when flying up to velocities of about 23^000 ft/sec, 

& is given fr^ statistical tneehanics by 

u 
1 /5 ~±±L11'& n- 

iC„(T) - 2.93 x 10 ' T '' (1 - e  I 

-228         '325.Sir 
e^r*e    ?   1 -59,365 

Q27 e 

e      T 
soles 

:4 
lÄAÄo. In the range between 3y0ü K and SüUO K. the above expression can be 

approximated, with less than 10% error (6) by 

(T) - 1.2 x 103 l'lj2  expC- ^m)    ^^S. F\   T  ^    3 
cm 

1^1 
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rhus,   fros Iqs.   IQ;   11 f  ^d 13 

k°2.»r      , 0 
it    « 25k snd r r 

k    - 3 x 10" T'i/k 

isole^  sec 

i'J 

Inserting 2qs. 9, 10 and 1 14  into ä vie ids 

„9 

!? - ^   P ^ C20.5 y + 4.5) - k,   r ;     y
2 '41y + S), 

dt        ö   |      w ■r   w2 

rr id 
where  the  tilde has  been  added to esphasize  that   tue quantities are,   in 

the case of  turbulent  flow,   coiaposed -; a  tinse averaged and an 

oscillating value. 

Sewricing £q.   15  in  terms  ot mei ae dependent quantities gives 

dt      d;      w        d        s^  i   j I— — 

ek s ~ ^   i— 
i-— '   v,p*p )     ^y-ry )     t^^iy+y i + 9 m 

sere we have used  the  fact  thai 

/dv'\ y'Ct)  - OJg    - 0,     and    y(t)  - y(t) - y(£)  - y(t), 

Carrying out the operations in Eq. 16, taking eise averages, and 

considering that the tise average of a prised quantity or its äerivative 

is zero, leads tö 

I.  I 
if       a        r 
at v2' 

"J 

wnere 
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Id-(4.5+2Q.5y)(l-y)(pkd+pfkp  + pysk]   (l6-4iy)  ^ k^p   (16-41y) 

i. mrr. .20.5 pk^ y^+p«y»kj  (lö-Aly)  - 2Q.5Cpy,2kJ + k^ y'^p')  "20,5 y'^p'^ ^ 

18 

2 2 r 2~   I I    - Pk   ? y    4- i2CQ+9)k py  p'y'   ■{■ 2P Py^n'k; + (0+9)Py y'k'+Pk y o'Mk P^y^    1 

(Q+9)k yp^y'  + 2Qk OT^P'  + 2   (Q+9)PyFyTF   + Py2 k'p12 + Q^k7y7I+41k P2¥!3 

ri ^ 

■§.   Ok o^v'2 + Qk  ß'V* * 2Pyp,2y*k' + 2QC^pV  + 41y2 k'y'p'2 + 82k py'V + 41p2y,3k?   1 

+ l^,p5  y''  ■!- 82pys"k;pi   * 4ii_v*^"   *- 41 k; P'^y*", ..3, ""1—' 
r- 

^r-i 
x i 19 

41y + 9, 

Q «  123y + 9. 

Ä8  Eifst  ters la B^s«   lö Süd  ly  is  Ch€ usual one  that  appears when  the 

flaw is   lasinar»    Mithout having any experlsiental   in format ion on  the 

behavior  of  the  correlation  functions   that  appear   in  these  equations, 

in   laminar   flow is   the 

dissociation say here become a 

it couifi c-e conceivable that 

contribution  to  the net rate due 

le tors i, %Iü: 
u 

recoabiaatida term, A similar coesent could be made aboat 1 , «hen 
r 

such a thing happens^, the phenomenological approach that led to stating 

the che&ical kinetics In the form ot  Eq# 8 say require modification. 

i- ii .quation ia contains up to fourth order correlations while Iq, 19 contains 

ip  to the sixth order.  It should be noted that in deriving Eqs. 18 and 
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19 no terms  «ere neglected, and that no restrictive assuaption was tssde 

regarding the size of primed quantities relative to the corresponding 

Bjean values (i.e. p'/p). 
I  i 

In order to reduce Eqs. 18 and 19 tö a tractable foms. It will 

be necessary to derive expressions or evaluate the correlation functions 

that appear.  Very few correlations higher than the second have been 

made in turbulent fluid mechanics which are applicable to Che present 

profales.  If the oscillating quantities are small cosipared to their 

respective mean values, correlations higher than the second will not be 

of iujportance.  In the case of hypervelocity wakes Slattery and Clay (4) 

show that (p2) /P- 0-5, which is far from saall. However, in order to 

sake Che problem tractable, it  will be assumed in the present paper that 

only second order correlations are of importance. After obtaining 

nuserical results based on this assumption, they will be examined and 

evaluated in terms of it. From Eqs. 18 and 19 the second order correla- 

tions required are 

PV. P1^ y'k*, p'k;, and y ^  , 
if i 

These functions should be expressed in terss of p' , pT , and T* . It 

will then be necessary to expand each of the prime quantities la Eq. 21 

in p1 and T% take products and then time averages. 

From the f?erfect gas law 

P+p
! - RCp+pCT^T'Kl+y+y*) I2! 

or 

Since the perturbation pressure will depend on the square ,- the perturb--- 

tion velocity. It will be assumed, as a first approximation^ that p'- 0. 

A discussion of Chla point is given by Kistler, with regard co compressible 

boundary layer work, in Sef. 1}   p. 295, Sisultaneous seasuveffients of all 

the oscillating quentities in Eq. 22 have net been »ade- even when y^' • 0. 
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Sense pressure measurements made In boundary layers by different investi- 

gations for various flow conditions are briefly reported by W'lllmarth 

in (Ref. 8, p. 112) fresn which 

*—w? 
9 

p     -  2 ^ ' C23] 
where y is the ratio of specific heats, and M is the Mach number of 

the flow external to the boundary aayer.  In order to apply this 

result to a turbulent wake, it is thought that the significant Hach 

nusber should be based on the velocity defect across the turbulent core^ 

of the wake^ Ihus. for a blunt object Sq. 22 will approximately be 

reduced to lp'4j 'y^p * 10 . 

Setting p'—O in Eq. 22a and solving for y* gives 

X»       v'T'   ,   O'y"       P'v'T'        >.     .IP'       T1 

. ^1 1 1 —£i LI 1 g2J >    f24d 
1 +■£-+'=--»- F~— pT 

or,   if using Eq.   22b 

(PT)sv 
- - (i+y) Mi' 

1 + (PT)1 i y'-   r    —^.   r      . ß4b 

The time averaged ternss that appear in Eqs, 24a and b are of higher 

order than the others^ and can therefore be neglected.  In order to end 

up with oscillating quantities of a singie variable In each term, and 

since the oscillating products are such that are not any easier to 

measure than the single quantities^ we will expand the last terra in 

parenthesis and the denominator of Eq. 24a into a power series of 

p-'/P and T'/l1« When the jame is done for k* and k' the results are 
d 

»3«« i ft9 in 



IQ!    T * _' T ' 

k' ■ k 

k' - k 
r    r 

<| - in) 1' +0 (^)J , *nd      j^ 

" Ti    T.2l 
-n ^ + 0 (—x) ! 
_  i       Ti J J 

Taking the products necessary to construct the expressions In Eq* 21, and 

averaging in time yields - 

(i+yy ^^2f^-^^Wtrl 
r P * / 

pie correlations 

p'y' 
oT 

(I+y) H^^    + f ■■■i.1 ■ I -r triple correlations 

/ 

ii« ? 

Dlk'. * »k,  q f-Ür + triple correlations f     o      i    a QJ 

TZ\ 
»kl - -(l+y)  k    «llfr    +—J H- triple correlations y-d d ToT ^ T y 

- T      Tr"^ 
+ triple correlations 

.« T ! 
y'k* ■  (l+y)  k    nlr  + ^"1+ triple correlations 

59-365 

m 
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Inserting Iqs. 26 into Iqs. 18 and 19 yields^ afcer dropping third and 

higher order correiiations, 

T' 
d  loo P   oil 

loo    L 
f.  f- '2 T2 ' h^p  '  ^  Vr 

i 

where 

I* " 

£, - 

(4.5 + 20.5y)Cl-y), 

(1+y) ß(16-41y) + 20.5(I+y)| , 

•> 

a+y)(36.5 ■■ 20.5y), 

(4.5 + 20.5y)a-y) q-(l+y) fqClo-Aly) + 57], 

sad 

CD 
4 ii< 

en r p 
+ g 

s'T' 
'4 bt 

i  «^ 

wnere 

g. - (41y + 9}y , 

89 3(lH-y) | (4ly+6)y + (41y+3)Cl4y) , 

y  (4ly+9)y+3(l+y) [(41y+3) ^)-2(4Iy-6)]l 

I (41y4*)(l4y)y+2 Q (41y^3) (1+y)
2 - j  (4ly+9)y^] 

It should be pointed out that f, and g , in Eqs» 28 and 30^ are the 

usual terms that appear in the chemical kinetic equations when there is 

no turbulence.  The remaining ft and g's can be interpreted as influence 

coefficients of the correlation functions on the rearition rates. 

We will discuss next how to arrive at some reasonable values for 

RR-5. 12 



the correlation lunctions necessary to solve the problem. 

3.  ESTIMATES OF THE CORREIATlOH FÜNCTIOHS BASED OS SOKE EXPEMMSfCAL 
MIA 

There are many different correlation functions that appeared in the 

foregoing discussion.  Only few sf then hä%fe ever be4n measured regard- 

less of the fluid sechanieal problea under discussion. Therefore, based 

on whatever expetiiHental data are available, we will have to at least 

evaluate the order of magnitude of the functions involved.  In ar4er to 

do this in a reasonable Banner, we will quickly and superficially review 

in what follows some of the typical values of certain correlation functions 

that have been measured in different flow probleiBSj i.e. boundary layers, 

jets and wakes. 

3.1 Measurements in the Soundarv Layer 

Typical seasuressents are those presenced by Klebsnoff(9) of the 

(u* / /u — 10 ^ in incospressible boundary layers; those of Kistler(7) of 

/  -, /, ,\  — 

fp}11^ ^mWü'2)1^^  ^xo*2,1^ « -7 x 10"
3, (^I>\4uÄ0.U In 

compressible boundary layers between snach nuabers of 1.72 and 4,67 where 

cne stagnation temperature was juu K. 

3.2 Measureaents in Turbulent Jets 

Data for incompressible jets can be found in Townsend's book (10). 

The maximum disturbances occur near the center of the jet and gives 

t\    ^    ,   
lu'   j 'Vu -0.15,  u'v'/u ^   .008.    Corrsin and Uberol  (11) aieasured for 

a heated  jet  {V1}1*2 T - 10     . 

3.3 Measureisents   in Wakes 

3,3.1     Incompressible Wakes 

For  incospressible wakes   flows Townsend shows  that 

U^jl^u«.04,  -T^/u2 ^.006, 
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3.3*2    Consprgssible Wakes 

Deaetriades   (12)   measured   (pu)'/pu *ü.40  in  the wake of a 
I i 

cylinder at free streain mach number of 5.8 and Reynolds nusbers between 

18^500 and 48^500,  Siattery sad Clay (4) have taken schlieren photographs 

of the wake left behind a spherical projectile of 1/2 inch in diameter 

flying at 8370 ft/sec in air at a pressure of 30 mm  of taercury, raey 

took densitoffieter tracings of the negative at several portions downstreass 

of the projectile and derived from theis the density fluctuations as given 

in the following table: 

The fluctuations in density can be seen to be quite Xarge^ and they are the 

first experimentally derived values obtained at hypervelocities. These 

values should be compared with p'u' /pu ^0,4 obtained by Deaetriades (11). 

Most of the oscillation of the mass flow correlation must be due to the 

oscillation in density, because if it were due to the oscillation in 

velocity, the kinetic energy invested in the turbulence would be pro- 

hibitively large.  Before use is made of a high value for the density 

fluctuation§ an attempt will next be made of explaining why such a value^ 

although high, could be justified In the case of hypersonic wakes. 

r-   sider the wake of a hypervelocity sphere (Fig, 1) that 

has a turbulent wake.  Lees and Hrosas (3) have analyzed^ in some detail 

tne betiavior of sucn a turbulent wake in equilibrium flow.  Within 

the turbulent core, one would expect to have eddies of various tempera- 

tares.  Tne range of temperature variation of the eddies would be 

between the low tetaperature in the inviscid flow at the turbulent edge 

and the highest value in the turbulent core.  Hrosas (13) has given the 

author sose of his calculations for a turbulent trail of a sphere of 1/2 

inch in dlaseter, flying at sea level at 9500 ft/sec.  At this velocity 

there are no cheiiiical reactions and the enthalpy on the center line h , of the 

trail divided by the edge value h  is equal to the corresponding 

temperature ratio, T /T,. 
'  o  t 

iiil-j , J-&2 l4 



For a blunt body, dost to the wake's neck, yfg should be near unity; 

very far downatr-affi, when all the gas has csoled, T^T^ -* 1.  In 

between, the outer inviscid wake cools rapidly and this ratio should 

have a p«ak, fig. 2 shews this ratio for two bodiss under different 

flight conditions. 

He will use the 9500 ft/sec curve to arrive at some conclusions 

regarding the turbulence structure necessary to make possible a value 

©flp' 1 'yY"* O»5* as obtained by Slattery and Clay (4).  Let us assume 

that in the turbulent core we have a sixture composed of lumps of hot 

and cold gas, which if no radial gradients of pressure allowed, represent 

spots of low and htgh density gas.  Let Q.P.   and 0 represent respec- 

tlvely the density of the cold gas, the hot gas and the sean value. 

Me will assusie that the structure is periodic in space with a period 

of length L. Me will neglect that the gas say be reacting cheaically. 

Thus ^ 

fe-^-r, By 
fh  Tc l 

The magnitude of the temperature f for the cold gas would not be lower 

(although it say be higher) than Tp the temperature at the edge of the 

turbulent wake. T. would be higher than the mean temperature calculated, 
n 

for exasaple, by Lees and Hromas. Thus, T, would be approximately given 

by 
T - T /T- 

1   o/ t 

Let the value of the square of Che density fluctuation be given fay 

p2   Z 

where the total density p is given by y  » O-f-p1, and the density 

structure is assumed Co be as shown In Fig, 3.  For that structure, the rsear 

RR-S, 3-62 15 
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density ts given by 

or 

(a - p) c - (P- P.) (!-€>, 

p  i + CTj - D £_. L34i 
Ph 

where €  is defined  In Fig.   3 

Interpreting Eq.   34   fox   the  structure of  Fig.   3,   giv^s 
2 2 

which can be rewritten as 

\(r Ph   .V  /  fh\2i  . (.   h 

I ^i 
We would  like  io ask new,   that  if one specifies a value of  W|  (obtained 

fros Lees and Hröjsas's calculations)   and X2   (obtained  from Slactery and 

Clay's saeasureisents)#is  there any hope  to  find a value of €,   from Eqs.   34 

and  35^   that would sake physical sense  for  the model of Fig,  3.     Physical 

sense means  that  the value of €  satisfies 

u -^ e -^ i Be] 

and even sore, € should be snail compared to unity; that is, only less 

than half of the sixture should be cold gas. 

It the value of ^/P fros Eq. 34 is used i... Eq. 35, solving for € leads 
i h I 

to 

-i2%  - w) w ^Xj (2T, - «r w- - 4 Ci; ^ D ^ 

2 cr2 ^ i) w 

——-—— f 

2 ir J 

where w ■ (/. - 1. 
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In erder  fsr €  to be real,   the siscrir inant n=»5  £0 oe positive or SS70« 

.- - rr 
Vi  '--■ -     CU    + 

or 

SliOUiU     Ml 

39 

,>> 1, 

IS   present   case   vtig.   tj 

at 95u0   £t/äee; 

treaa ;ne   peüeL 

:—     ->   ^ ' 

aodej ig«   ^ csnnoi 

;   giving   irom   QS^'L-  *   Ü.ÜÖ3Ö.      aia'tery 

?en   aODroximatelv  correct   if   Slatt^ry 

J      r1^^        *- a  ■ 1 1 ■    mm T -- 

of Fig. 3 are certaxniy incor 

the sagnitude or the sean vai 

wrong.  ThuSj tt «auiö ea int 

£4, 3? would yield it --^  leere 

'v- ■ 0.04^ which corresponds 

ic. ^i   two väüjen üi € ^«in 

These  values   lead,   tr-om Eq.   3 

p/n    =   l.y5. 

crie=öse  £  —  0,15  and  p^ 

We.   theretC're,   conclude   that 

>=reo w Ai^ii      ITCai Hiience, 

lannöt oe rauü;«**: 

i!.«ieri3iri5 value 

iS   »        0^.^.%.-» ^&Si&        -w 

P*    )   sPm 0.2   instead of 0,5.     Fro« 

»und:     either e — U.o-S or € Ä y,ij, 

he orevious discussion. 

« =* s      ^^£ 

.ü T      £5      üiET^ 

ii^ftfs      a::%f      iiiOii=^Si      ^ 

i^i      wU*^     iue^ i i^-^ w iw-i    ^i.     iijl*     ^ 

iEAiij      vU 

i.» , WWW       i. i./  Iltfi.   ,       « '119 vl «£=!«. 

iiii^S .        v«|t j «   1  and  us: 

,04, 

05   3-6Z 



wiigre   ttie  subscripts   1 and  2  denote   the   two  possible  solutions  ot   the 

prööieis,     Sal /aiues ot c and p ,   particularly  the second ones, ar* 

reasoflaSie   Because   »ucn   values   Shoui 

^HER SIKPLIFICATION Or Tl 

i  oe  ynysxcBLi.y reaügaDie, 

JATIGNS  FOE A TOSSULEST R^CTISG 

quacion  to do nuserlcai calculations^ 

correlation  functions   that appear 

H^ror^ usxng cii^ Couservatiy? 

it will  be i^ecessarv  tn  specify ' 

in E4|S*   L  cnru 6.     In oraer   ror  tnese  equations   to be consistent with 

Eq,  6   ^wnere   the correla  iorsS  higher   than  the second were assumed ssall)^ 

tne  iast  tens  irs  voe rignt  nana mesne 

outj   as well  as   the   last   three  in  the 

last   tefia o£   tne   lelt  hand memfc-er  ol 

little  is known about  the   functional 

tiifiu   uexiva«.iVes   wi,i_ii  ressj^cw   CO    X 

le  equations  reduce   to 

RT 

r  c=r Eqs     1 and  5 should be  left 

ngnc hand aeiaber of E^,   3,     Ine 

3  should  also be  left out.     Since 

dependence of the correlation  fonctionSj 

(or  s)   could  be  left out.     «Uten  this 

€0 

sem 
ds 

V(p/?    Xl+^u'/p) 

»nere 

T- ■     n   -* ±i_ 

muoo   \       7 
uM 

/ 

RT 
09 Oö     i 

I ifr     I ii 
I u I   I.     m 

\  OQr     * 30 

^%f^§;€äni^ät 
KT T 

CO id 

—    (i-y)?'    fexpCö^ 

*yR ■ Pi   „«f r*- (| + p|a-y) 

|1 + -   _v * ß «XPC« /typ*" 

L4U 
S^S-^^ j      -i^-^^L 19 



where 

i «s»F   v? 

ä £ä^c' 

ÖD €D 

1 / 

»    00 i   i \ 

L. _l 

jrn 

Py    +    yT     I 

HSI 

Cnemical 
Kinetics: 

n PJ 

=i/     i=ii^    w-3 ^€1 

a i^^? ü ; 

woui.«   x=i^ra^iU^c   ^^   e^i^ur   Gi= 

?Z^iiJ.=i i^ix^i:^  ^ 

rSiC     0fl4l 

Aft, &@I isl  i»^=ii.     a. srs ■e     vi^^^    ^.-~W=i-i; ." I; tf C K.    w ü 3    iii-zi £^ t! 

a i   ^^n.tf rS iu^I   i.   i_ LiiSvuss^ii   iätgr. 

il^     C&#& & S icä i^ ^.t/isa     äi 4:     s.£4fE!,. fillS •    ^ > ^*-^*      ?^,a.;i       Life      t-li^.cJ^^i, 



u I   •   V 
go    l 

IM RT exp 8v/r-i, 

59365       ew 

oo SXp       Sy/T       -  I 

K 

Difterentiatlon or Eq.   51 with respect   to  s,   insertion of Eq*«  42 and 

50  lead  tc 

a> 

fdCp/p.   > / 
+ 5^.365 — 

2274 
(exp 2274/T)-l |u    V/|y 

-is OJAV 
i.Sy + 3.D +  ^i-¥)|-^—^i   i _:—* *——^ , 

fin 

j
2\ 

la order to »olv« the dirferential equations 42 and 52 it is necessary 

to prescribe the pressure on the streastube as a function of s.     Since 

Ws **"E intersstes xn s oiunt bod] 

distribution on the nose as 

we w] prescribe a Hewtonlan preasur« 

OB 

;os  s. < . ■* 

€P 

^ s^ O.S6(-5r)  [53^ 

where tne subaurlpt s denytes stagnation conditions.  Let p . denote 
sn 

pressure an 9ü~ away fross the stagnation point, then the pressure ca? 

be expressed (14) as 

r •1 P 

p« "[i + a (S-|}J 
nVP- 

OD 

L  2<-P 
.•'!   K 
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Wiiere  "        eaa   Se  decersined   (13)   fi 

_-sn / 
t f -= 

\ 

82 / I    __-2 

1  I p= 
!55i 

«nere 
go iisber.     Between 55    and 90     the 

pressure can  De   ticced with an  expression or  the  form 

«as     + os + 
oo 

i,96 ^ s ^ | r n 

^hare 4•£SäJ -   i-o.j/y 
ÜD OO 

&"-3./ö37   ~    + 43.uyu 
oo ill 

f95 
QD 

iiii   i    s 

00 
0 tf s ^ O.yfe - 58 

i   + 

^n/    yD 

0.96 * s ^ f   (591 

&ft     go 

i   i its 

1*2   (s  - |)f -2   (s  ^  s } 
-1? •> T 

f— 

^    L!c 
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Finally,   the correlation  functions  necessary is Eqs.  2? and 29 are 

T^/T    D*2/?2 and ^F/pT.      the eaiculations will be sade  for  the 

case where the streamtobe has no  turbulence  fros s~Q  to ^3#   it buiWs 

up  iinesrly with distance until it reaches s-4   (i.«-  ™ «« radius)   Co a 

value that stays  constant with s   (Fig. 4)^   i.e. 

i 
s 

?V - p/p2 
I T  /OX " for   0 * s ^ 3 BO 

I I 

^ 
äl 

S-SI f 

T2 
Vsi 

—T2 

P2" 
1 

a2 
a-s1 

52-Sl 
> 

■*3 
S'S1 

Vsi 
} 

"S 

S      rf   S   Ä   Sj [62] 

where §-, • 3 and  s    » 4J 

"5 /r 'i' pfVp md   n'T'^T s >s. iö3j 

5.     DISCUSSlOh' OF HÜHIRICÄL RESULfS, 
Before deciding «hat values of a , a5 and a., should have ta 

the calculations, it is important to realise some of the restrictions 

that have to be isposefi. 

Only   a   has been seasured   (4).    Thus  the ether  a's have  to be con- 

jectured^     a,   and a     are positive definite.     In a nen-reactia^ &ääf 

J - conitant'and  if in Eq.   22  a p'« 0,   ?#T#  would always  be a negative 

quantity,   and  further sore would be ^ero.     However,   in cmr calculations 

7T   was  assumed to be negative or  *ero.     Mo calculations were isade  for 

aR-3, i-fc- 23 



p T p-wftitive.  It also follows, ttum  the non-reacting ease, that a » a„. 

Various other relative values of a, and a.-= were used also. 

A physically iffipossible cciabiriatiön of a's manifests itself in an 

obvious way fay I beeoffling negative, I, or I both have to be positive 
« a    r 

at all tiiaes. 

If the a's are sept smaller than 10 f   the present probiea as treated 

herein is approxiinately correct.  For larger values of the a's the triple 

and higher order correlation terms, which have been left in the calculation, 

become important. These could be kept, but the difficulty is to prescribe 

reasonable values to them in a particular calculation, since not only have 

they not been seasured, but it may be impossible to do so. 

Fig. 4 shows the cemperature 1 and atomic oxygen sass fraction y} 

along a streasstuse as a function of downstreas distance measured from the 

normal shock non-dimensionalised with respect to nose radius,  Iwo spheres 

have been used, one of 1/2 inch r 4iu5 and the other of 5 inches, flying 

et äO.Oüü it/sec in an oxygen atEoSphere where density is 10 the normal 

value. When ^/r ^0, the temperature reaches a high value while y»0. 

Alter dissociation the temperature drops and y builds yp.  Fig. 4 shews 

the history of the flow for s;> 10 ".  It can be seen that for large values 

o£ s, atter tne pressure has long ago reached the free-stream value, the 

variables reach a constant equilibrium value.  The reason for the equi- 

librium state tor each sphere Is not the same is due to different en- 

tropies ot the flow in each case: for the smaller stiere the flow is 

rurther out or equilibrium during ehe expansion process, thus leading 

to a larger entropy in the rinal state, which represents a higher final 

teiaperature. 

It should be noted that the final equilibrium state will be affecteQ 

by the presence of turbulence.  This can be clearly Seen from the reaction 

rate equations when they go to equiiibriua.  One other way of looking at 

this face is that the turbulence terms modify Gibbs' funetion, which when 

minimiseiJ, leads to a different equilibrium condition. 

Figs. 5 through 7 present Some of the results obtained for the ease 

El-S, 3-62 24 
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:- 

Ü 

r " 5 inches.  In these tigures the curves should be coaspsred with the 

non-turbaient results. The solid curves are to be trusted, while the 

dashed ones cannpt be proves to be correct-  However, the fact that they 

form a reasonable faiaily is aeanlagful.  In Fig. 5 for exsaplt it should 

be noted that although the final equilinriuia tessperature is inereased by 

at most 300OK when the flow is turbulent, between i • 10, the increase 

can be near 1000OK, This hotter wake could then lead to signifleantly 

sore radiation. Using the data of these figures, it is possible to calcu- 

late the absolute sagnitude of the radiatisn for the different assused 

situations. Such results would be sore sensitive to the turbulence than 

the teasperature variations. 

Figs. 8 through 10 give sisilar results fnr the case where the 

sphere nose radius is 1/2 inch.  It can be shown that li the correla- 

tions neglected in Eqs, 42 to 49 were included in the calculations^ 

higher temperatures would ensue* 

6,  CONCLUDING RB1ARKS 

From the foregoing results it cao be said that turbulent ehesical 

reacting flows under tne conditions studied can lead to flow fields, which 

at any given station are of a higher tesperatyre than without turbulence. 

The fact that, in hypervelocity wakes,, the isean values of the turbulent 

correlations can be large, leads to the possibility of significant effects, 

although we have not proven this with all the necessary rigor« The Sur- 

face has just been scratched and auch werk regains to be done. 
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